

REALbasic QuickStart

Welcome to REALbasic!

REALbasic is an application builder based on a modern version of the BASIC
programming language. The REALbasic development environment is made up of a
rich set of graphical user interface objects (commonly referred to as a GUI), an object-
oriented language, a debugger, and a cross-platform compiler.

REALbasic provides you with all the tools you need to build virtually any
application you can imagine.

If you are new to programming, you will find that REALbasic makes it fun and easy
to create full-featured Mac OS and Windows applications. If you are an intermedi-
ate or advanced programmer, you will appreciate REALbasic’s rich set of built-in
tools.

This QuickStart is for people who are new to programming and new to REALbasic.
It will give you a gentle introduction to the REALbasic development environment,
lead you through the development of a real application, and show you what kinds of
other applications can be built with REALbasic.

It should take you no longer than 30 minutes to complete this QuickStart.

Note If you have experience with other versions of the BASIC language or have experience
with other programming languages, you’ll want to check out the Tutorial or
Developer’s Guide. In the Tutorial, you’ll develop a more complete application, which
includes menus, dialog boxes, and standalone objects called modules.
1REALbasic QuickStart

Starting REALbasic

Starting REALbasic
If you haven’t done so already, install REALbasic on your hard disk and double-click
the REALbasic application icon. In a few moments, the REALbasic integrated
development environment (IDE) appears. If you’re using Mac OS X instead of a “classic”
version of the Mac OS, the interface will appear “aquafied,” but the two interfaces
offer exactly the same features.

Figure 1. The REALbasic Design Environment.

Note In Figure 1 some windows have been moved from their default positions so you can
see them better.

Properties
Window

Window
Editor

Tools
Palette

Project
Window

Mac OS 9.x

Mac OS X
2 REALbasic QuickStart

REALbasic’s Windows

REALbasic’s Windows
As you can see in Figure 1 on page 2, there are four windows that open when you
start up REALbasic:

■ The Project Window contains a list of all of the major items that make up your
REALbasic application. For example, the Project Window includes all the windows
that your application uses, the Menu Bar, and objects such as sounds, pictures,
databases, and QuickTime movies. You double-click an item in the Project Window
to edit or view it.

■ A Window Editor is where you build all the windows, dialogs, alerts, and palettes for
the application. Each window is opened in its own Window Editor and all the win-
dows in the application are listed in the Project Window. By default, an application
has one window that opens automatically. You can add as many windows as you like.

■ The Tools Palette contains icons representing interface objects that you can add to a
window. You build your application’s interface by dragging and dropping icons
from the Tools palette to a Window Editor.

■ The Properties Window lists the properties and their values of an item you select in a
Window Editor or the Menu Bar Editor. You can add or modify an object’s
properties by editing the values in the Properties Window.

In addition, the complete REALbasic Language Reference is online. Choose
Help . Language Reference to display the online reference. Use it as a convenient
alternative to the printed or electronic (PDF) version of the Language Reference.

Getting Started
In this QuickStart, you’ll build an application that manages URLs or email
addresses. A URL (which stands for Universal Resource Locator) is the address of a web
page that you type into the Address area in your web browser. This application will
launch your default web browser application and display the web page that you
entered.

Figure 2 shows a URL in a browser URL Address area:

Figure 2. A URL entered into a browser.

If you enter an email address, the application will launch your email application,
create a new blank email, and enter the address into the “To” box.
3REALbasic QuickStart

Creating the Interface

When you are finished, the application will look like this:

Figure 3. The finished URL Manager application.

You use the text box to enter the URL (or email) address you want and then click
Connect. To save it in the list, you click Add. To select a URL, highlight it in the
list and then click Connect. If you are finished with a URL, highlight it in the list
and then click Delete.

The application uses three types of prebuilt interface elements do to most of the
work for you:

■ A ListBox is the type of control that holds scrollable lists. It can hold both single-
and multiple-column lists and scroll horizontally and vertically.

■ An EditField is the type of control that holds text. It can be used to hold either a
single row of text (as it is here) or as a text editor. The latter is illustrated in the
REALbasic Tutorial.

■ A PushButton is a standard pushbutton. It is most often used to initiate an action
(as it is here).

Creating the Interface
The your first task is to build the interface. You already have the REALbasic
development environment open.

1 In the Tools palette, hold down the mouse button on the ListBox icon and
drag it to the top area of the Window Editor.
When you release the mouse button, a square ListBox appears in the Window Edi-
tor.

2 Use the resizing handle in the bottom-right corner to enlarge the ListBox. Center it
in the upper area of the window, as in Figure 3.

Enter URL or email
address

Click to add to list

Click to copy to the
text box

Click to delete from list

Click to connect to
web page or email
client

ListBox

PushButton

EditField
4 REALbasic QuickStart

Creating the Interface

Figure 4. A ListBox added to the Window.

3 Next, drag a Pushbutton control from the Tools palette to the lower-left
portion of the window (where the “Add” button in Figure 3 on page 4 is).
As you drag toward the left edge of the ListBox, a vertical alignment guide appears.
Use the vertical alignment guide to position the Pushbutton, as shown in Figure 5.

Figure 5. Aligning the Add pushbutton.

4 With the Pushbutton selected, press q-D (Edit . Duplicate) to make a copy of the
Pushbutton. Move it to the right of the previous button and aligned with the right
edge of the ListBox.
When you reach the approximate position, both vertical and horizontal alignment
guides appear. Align the baselines of the two PushButtons’ captions, as shown in
Figure 6.
5REALbasic QuickStart

Creating the Interface

Figure 6. Aligning the Add and Connect pushbuttons.

5 With the Pushbutton selected, press q-D again and move this Pushbutton into the
position of the Delete button.
Use the vertical alignment guide to align the two Pushbuttons with the Listbox.

6 In the Tools palette, hold down the mouse button on the EditField icon and
drag it into position in the window, midway between the Delete and Connect
buttons.

7 Align the left edge of the EditField with the left edge of the ListBox.

8 Use one of the EditField’s selection handles to stretch it so that its right edge aligns
with the ListBox.

Figure 7. Aligning the right side of the EditField with the ListBox and Pushbuttons.

Note You can also position a control by clicking on it and moving it one pixel at a time
using the arrow keys.

Your application’s interface is now complete! It should look something like Figure 8
on page 7:
6 REALbasic QuickStart

Creating the Interface

Figure 8. The finished interface in the development environment.

Before going any further, save the project.

■ Choose File . Save (q-S) and name it URL Manager 1.0.
At this point, you can actually try it out. Of course it won’t do anything since we
haven’t told any of the interface elements what to do.

1 Just for fun, choose, Debug . Run.
The REALbasic application switches to the Runtime environment, in which you
can try out and debug your application.

The first alpha of this application should look like this:

Figure 9. The first version in the Runtime environment.

In this state, the PushButtons work — that is, you can click them and they
highlight — but they don’t do anything because we haven’t told the PushButtons
7REALbasic QuickStart

Giving Objects Meaningful Names and Labels

what to do when they’re clicked. You can enter text into the EditField — but it
doesn’t go anywhere because there are no instructions to process this text. And the
ListBox is all set to display and scroll items but we don’t have any way to get text
into the ListBox yet.

But it’s a start. We need to go back to the development environment to get this
application operational.

2 Choose File . Quit (in Mac OS “classic”) or REALbasic . Quit (in Mac OS X) to
return to the development environment.

Giving Objects Meaningful Names and Labels
You’ve already noticed that quite a few objects have the default label “Untitled.”
They also have default names like PushButton1, PushButton2, etc. Before getting
to far into the project, we should give the objects meaningful names and labels. The
names are used internally in our REALbasic code and, of course, the labels are
presented to the user. If you’ll refer to an object in your code, you should give it a
meaningful name at the start of the project.

1 In the development environment, click on the Window Editor — not one of the
controls in the window — and then take a look at the Properties Window.
It has the default name “Window1”, which is shown in the first line.

Figure 10. Window1’s Properties Window.

The text that appears in the Title bar of the window is the Title property.

Object Name

Default position
and size

Default window
type

Window Title
8 REALbasic QuickStart

Making the URL Manager Do Something

2 Select the default Title, “Untitled”, in the Properties Window and replace it with
URL Manager, and press the Return key. When you press Return, the new title
appears in the Title bar of the Window Editor as well as in the Properties window.
Similarly, we need to replace the default names and labels for the controls in the
window.

3 In the Window Editor, click on the “Add” button (the one in the lower left).
Notice that the Properties Window changes immediately to show the properties of
this control. The three PushButtons are named PushButton1, PushButton2, and
PushButton3. We’ll never remember which one is which, so it’s best to rename
them at the same time we’re entering their labels.

4 Change its Name property to AddURL and its Caption property to Add. Press
Return to save each new property value.
Notice that the Caption text immediately replaces “Untitled” in the Window Edi-
tor.

5 Click on the Connect button to select it. Use the Properties Window to change its
name to ConnectURL and its Caption property to Connect.

6 Click on the Delete button and change its Name property to DeleteURL and its
Caption property to Delete.

7 Click on the EditField and change its name to SelectedURL.

8 Click on the ListBox and change its Name property to ListURL.
That takes care of it.

9 Choose File . Save to save your changes. Choose Debug . Run to test it.
It doesn’t do any more than the last version, but at least all the interface elements
are labelled correctly.

10 Choose File . Quit (in Mac OS “classic”) or REALbasic . Quit (Mac OS X) to
return to the development environment.

Making the URL Manager Do Something
Now that the interface is designed and its appearance is touched up, it’s time to
make the controls to their jobs. We’ll start with the Connect button.

1 In the Window Editor, double-click the Connect button.
The Code Editor for the application window appears. On the left side is a browser
area that lists all the controls that we’ve added to the window, among other things.
(For the QuickStart, we only need to work with the controls.) On the right side is
the code editing area. It holds the code for the item that is selected in the browser.
9REALbasic QuickStart

Making the URL Manager Do Something
Figure 11. The Code Editor for Window1.

In order to get the Connect button to do something, we need to write some code
that will run only when the button gets clicked. Fortunately, the REALbasic appli-
cation itself monitors all user interface activity while any application is running and
it knows whenever this happens. What we need to do is come up with the instruc-
tion that connects the user to the web site that the user enters it in the EditField.

You’ll see a list of events that REALbasic continuously monitors while the
application is running. The one we need is the “Action” event. This takes place
when the user clicks the button. This event is selected automatically when you
double-click a PushButton in a window.

On the right, you can now write the code that runs automatically when the user
clicks the button. (Notice that the first line in the Code Editor, “Sub Action()”,
indicates which event the code is for). The instruction to open a web site in the
user’s browser (or open the email application) is simple. The instruction is
ShowURL and its syntax is:

Where text is the URL (or email address).

2 To test out this button, enter the following line in ConnectURL’s Action event:

Your Code Editor should now look like this:

Figure 12. The code for ConnectURL’s Action event.

3 Choose Debug . Run to test out the Connect button.

Select an
event in the
Browser area

Write code for
that event in
the Code
Editor area

ShowURL text

ShowURL "http://www.realsoftware.com"
10 REALbasic QuickStart

Making the URL Manager Do Something
4 Click the Connect button.
In a few moments, your default web browser will launch and bring up the REAL
Software home page. (This, of course, assumes your Macintosh has a connection to
the Internet and you have a default browser application.)

Figure 13. The REAL Software home page.

Of course, we need to modify the code so that the text passed to the ShowURL
command can be entered by the user while the application is running. When we use
ShowURL "http://www.realsoftware.com", the particular URL is “hardcoded.”

5 Choose File . Quit (or REALbasic . Quit) to return to the development
environment.

In this case, we want to use the contents of the EditField. The user can enter a URL
or an email address while the application is running or click on an item in the
ListBox to copy it into the EditField.

Since the EditField is named “SelectedURL”, you might think that we could write:

but that won’t work because “SelectedURL” is the name of the object itself. It has
lots of properties — like its position in the window, whether it takes several lines of
text or just one, whether it can accept styled text, and so forth. If you use
“ShowURL SelectedURL”, REALbasic would have no idea what you mean.

When you need to refer to one of an object’s properties, you use the syntax:
objectname.propertyname

ShowURL SelectedURL
11REALbasic QuickStart

Making the URL Manager Do Something
1 In the Code Editor for the Action event, modify the code to read:

This expression SelectedURL.Text refers to the text property only.

Your Code Editor should now look like this:

Figure 14. The revised code for the Action event.

2 Save the project (File . Save) and switch over to the Runtime environment
(Debug . Run).

3 Enter a URL in the EditField, such as “www.realsoftware.com” and click Connect.
Your default web browser should launch and open the web page you entered.

4 When you’re finished, quit out of the Runtime environment (File . Quit or
REALbasic . Quit) and go back to the development environment.

Now, we’ll make the other controls do their jobs.

The Add
Button

The Add button is supposed to take the text in the EditField and add it to the end
of the list in the ListBox. That’s easy.

1 If the Code Editor for the window is not already open, double-click the Add button
in the window (If the Window Editor is not open, double-click its name in the
Project Window).

2 Enter the following code into the Add button’s Action event:

The first part of the expression, ListURL.Addrow calls a built-in method belonging
to a ListBox. AddRow adds a row of text to the end of whatever list is already in the
ListBox. Not surprisingly, it needs to be passed the text of the new item. We already
know that SelectedURL.Text refers to the contents of the EditField, so that is what
we use.

Note A method is a command that performs an action. Technically, ShowURL is a global
method because it isn’t attached to any particular object. It can be called by any
object that can call a method. We just happen to be calling it from a Pushbutton.
(We could, for example, design the application so that ShowURL is called when the
user chooses a menu item instead of clicking a button.)

ShowURL SelectedURL.Text

ListURL.Addrow SelectedURL.Text
12 REALbasic QuickStart

Testing the Application
Just as objects can have properties (like their name, size, position, and label), they
can also have their own methods. AddRow is also a method but it “belongs” only to
ListBoxes. It has a specialized action that only makes sense when applied to lists in
ListBoxes.

The Delete
Button

The Delete button removes the selected item in the ListBox. It’s also pretty simple.

1 In the Code Editor, expand the DeleteURL item and highlight the Action item.

2 Enter the following line of code:

In this case, we are calling the built-in RemoveRow method of the ListBox. Instead
of text, it needs the number of the row (line) to delete. The ListIndex property con-
tains that number, so we pass that number to the RemoveRow method.

The ListBox The ListBox itself has the job of copying the item the user selects into the EditField
so the user can connect to that URL. You can easily do this by writing an assignment
statement that runs when the user highlights an item in the list.

1 With the Window Editor in the front, double-click on the ListBox.
The Code Editor window changes to select the ListBox’s Change event. The Change
event runs whenever a different item is highlighted in the ListBox.

2 Enter the following code into the Change event:

The ListBox’s Text property contains the text of the highlighted item. The assign-
ment statement copies this text into the Text property of the EditField.

Testing the Application
That’s the basics of this application. Now it’s time to test out all these features.

1 Choose File . Save to save your changes.

2 Choose Debug . Run and test it out.
The application looks the same as it did, but all the controls work!

ListURL.RemoveRow ListURL.ListIndex

SelectedURL.Text=ListURL.Text
13REALbasic QuickStart

Testing the Application
Figure 15. The first working the URL Manager application.

You can:

■ Enter a URL into the EditField and connect to the site using your default web
browser.

■ Add the URL to the ListBox.

■ Select any URL in the ListBox to copy it into the EditField.

■ Delete the selected URL in the ListBox.

If you want to send an email, enter it in the following way:

If the
Application
doesn’t run

Like any development environment, REALbasic’s language has a vocabulary and
syntax. If you misspell a term or use incorrect syntax, you won’t be able to try out
the application until you correct the mistake.

If something is wrong with your code, REALbasic will stop and point out the first
error it finds when you choose Debug . Run. For example, in Figure 16 this user
has entered the name of a general class of objects (“ListBox”) rather than the
particular ListBox itself:

Figure 16. A vocabulary error.

mailto: address@domain.com
14 REALbasic QuickStart

Testing the Application
Of course, you need to correct the error before the application can run. Each time
you test the application, REALbasic will stop at the first error, so there may be
others.

Using
Autocomplete

One way to avoid using incorrect terms is to take advantage of REALbasic’s
“autocomplete” feature. As you type, REALbasic tries to guess what you are typing.
If you type the first few characters of a REALbasic language object — either built in
or a variable, method, or property that you created — it shows its guess in light
gray type. If the guess is correct, press the Tab key to complete the entry.

Here an example:

Figure 17. Autocomplete in action.

The user has just typed “List” and REALbasic has suggested “ListURL”. Pressing
Tab completes the word.

If REALbasic knows several alternatives, it displays them in a contextual menu
when you press Tab. For example, after accepting “ListURL” and typing the period
key and the first two letters of the next term, REAL basic can suggest only four
possible correct matches. Press Tab when you see the ellipsis (“…”) and, when the
contextual menu appears, use the up or down arrow keys to select the correct term.
Press the Return key to select it.

Figure 18. A contextual autocomplete menu.

In this way you can avoid many typing and syntax errors. Try using autocomplete in
the following section.
15REALbasic QuickStart

Testing the Application
How can the
application be
improved?

Although all the controls do their jobs, they do their jobs when it is inappropriate
to do so. For example,

■ If the EditField is blank, clicking the Add button adds a blank row to the ListBox
and clicking the Connect button tries to open a non-existent URL.

■ If no item is selected in the ListBox, the Delete button tries to delete a non-existent
row.

We should make it impossible for the buttons to be clicked unless the conditions
are right or, at least, give the user some appropriate feedback.

1 Choose File . Quit (Mac OS “classic”) or REALbasic . Quit (Mac OS X) to return
to the development environment.

2 Double-click on the Connect button in the Window Editor to open the code for its
Action event.
It currently reads:

We need to make this conditional — so that the line is executed only when there is
some text in the EditField. For now, we’ll have to assume that the user knows how
to enter a valid URL or email address.

3 Modify the code to read:

This code first tests to see whether the contents of the EditField is blank. The <>
symbol means “not equal to” and the quotes with nothing in between specify blank
text. If the EditField is blank, we use the MsgBox command to display an alert box
with an informative message.

4 Expand the DeleteURL item in the Code Editor and select the Action event.
We need to follow the same logic. This code should run only if the user has selected
an item in the ListBox—not all the time.

5 Modify the code to read as follows:

6 Expand the AddURL item in the Code Editor and select the Action event.

ShowURL SelectedURL.Text

If SelectedURL.Text <> "" then
ShowURL SelectedURL.Text

Else
MsgBox "Please enter a URL or email address."

End if

If ListURL.Text <> "" then
ListURL.RemoveRow ListURL.ListIndex

Else
MsgBox "Please select an item in the list."

End if
16 REALbasic QuickStart

Testing the Application
In this case, we can add an extra test. If the item is already selected, it doesn’t need
to be added, so we can test for that condition as well. The first test prevents the Add
button from adding a blank row and the second test prevents it from adding a
duplicate row (We could also write a separate method that tests whether the new
item matches any item in the ListBox, but we will leave that as an exercise!)

7 Modify the code to read as follows:

Next, we want to prevent the user from using the Add and Connect buttons if there
is nothing in the EditField.

8 Expand the SelectedURL item in the Code Editor and select the TextChange event.
The TextChange event runs whenever the text in the EditField has changed. We
want to take action based on the EditField’s state just after the text has changed. If
the EditField is now blank, we will disable these two buttons so the user can’t use
them. And, if there is text in the EditField, we will enable the buttons and make
the Connect button the default button. The default button has an outline around it
on Mac OS “classic” and it “throbs” on Mac OS X.

9 Enter the following code into the TextChange event.

One thing you notice about this code is that the first line uses the pronoun “Me”
instead of the name of the control. “Me” always refers to the control the code
belongs to; since we are inside the EditField, “Me” refers to the EditField. In other
words, this line is the same as if we wrote If SelectedURL.Text….

The last step is to modify the code for the ListBox. This code needs to test whether
the user has highlighted an item before trying to copy text into the EditField. It
also should manage the Delete and Connect buttons. There’s no reason the user
should be able to click Delete if no item is selected.

10 Expand the ListURL item in the Code Editor and select the Change event.

If SelectedURL.Text <> "" then
If SelectedURL.Text <> ListURL.Text then

ListURL.Addrow SelectedURL.Text
End if

Else
MsgBox "Please enter a URL or email address."

End if

If Me.Text <> "" then
ConnectURL.Enabled=True
ConnectURL.Default=True
AddURL.Enabled=True

Else
ConnectURL.Enabled=False
ConnectURL.Default=False
AddURL.Enabled=False

End if
17REALbasic QuickStart

Building A Standalone Application
11 Modify the code to read as follows:

12 Save the project.

13 Choose Debug . Run to test it out.
When you first open the application, you can test the alert messages that you’ve put
in each PushButton. Then add a URL and see how the application behaves.

14 Whey you’re finished, return to the development environment.

Building A Standalone Application
Now that you’ve a finished version of the application, you’re ready to create a
standalone application. The standalone version of the application runs just like the
application you’ve been testing, but it doesn’t require the REALbasic application
itself. It can be double-clicked from the desktop, just like a commercial application.

The Professional version of REALbasic can create standalone applications for both
the Macintosh and Windows platforms. The Standard version allows you to build
demo versions of Windows applications. A demo version quits automatically after
five minutes. You can build fully functional Macintosh applications with either the
Standard or Professional versions.

Building Your
Application

Building a stand-alone version of your project as an application couldn’t be easier
than it is in REALbasic.

1 Choose File . Build Application (or press Shift-q-M).

REALbasic compiles your project, creates a standalone application, and brings it to
the front in the Finder.

Figure 19. The URL Manager built application icon.

By default, it uses the name “My Application” (or “My Application (Mac OS X)” for
the OS X platform).

2 Double-click the “My Application” icon and try out the program. When finished,
choose Quit to put away the URL Manager and go back to the REALbasic project.

If Me.Text <> "" then
SelectedURL.Text=ListURL.Text
ConnectURL.Enabled=True
DeleteURL.Enabled=True

Else
DeleteURL.Enabled=False

End if
18 REALbasic QuickStart

Building A Standalone Application
Customizing
the Standalone
Application

Before building a standalone application, you can set several options. For example,
you can change the application’s name in the Finder, build for other platforms, set
memory requirements for Mac OS 8-9, and some other options. You use the Build
Settings dialog box for this. After choosing your options, the Build Application
command uses your current Build Settings automatically.

1 Choose File . Build Settings.
The Build Settings dialog box appears.

Figure 20. The Build Settings dialog box.

2 If you have a Windows computer available or are running Virtual PC™, check the
Windows checkbox.

3 Enter URL Manager as the name of the Macintosh application for the version of the
Macintosh OS that you’re using. If you’re building a Windows version as well, enter
URLManager.exe in the Windows Applications Settings area.

4 Click OK.

5 Choose File . Build Application again.

6 Quit out of REALbasic (File . Quit on Mac OS “classic”) or REALbasic . Quit
REALbasic on Mac OS X).

7 Double-click the new Macintosh build and try it out. If you have a Windows
computer, move the Windows version of URL Manager to that machine and
double-click. If you have Virtual PC installed on your Mac, you can just double-
click the Windows version of URL Manager and it will launch Virtual PC and open
the application.
19REALbasic QuickStart

What’s Next
For example, in Figure 21 the application is running under Windows XP™.

Figure 21. The Windows version of the URL Manager application.

What’s Next
The QuickStart shows how easy it is to develop a simple application. In the Tutorial,
you build a more elaborate application — a word processor that supports styled
text, creating, opening, and saving files, and printing. It illustrates more
REALbasic features, including alert and dialog boxes, menus and menu items,
writing and calling methods, creating classes, and compiling platform-specific code
for Windows and Macintosh builds.

With the skills, you’ll learn in the Tutorial, you’ll be able to add a File menu to this
application with Open and Save items that will allow you to save URL lists to disk
and open saved lists. Or, you can check out the built-in REAL database and save
URL lists to the database.

Also, be sure to check out the Learn section of the REALbasic web site for other
tutorials and how-to’s. The URL is http://www.realsoftware.com/learn/index.html.
20 REALbasic QuickStart

	REALbasic QuickStart
	Starting REALbasic
	REALbasic’s Windows
	Getting Started
	Creating the Interface
	Giving Objects Meaningful Names and Labels
	Making the URL Manager Do Something
	The Add Button
	The Delete Button
	The ListBox

	Testing the Application
	If the Application doesn’t run
	Using Autocomplete
	How can the application be improved?

	Building A Standalone Application
	Building Your Application
	Customizing the Standalone Application

	What’s Next

